ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 4 ์š”์•ฝ

๋ณธ ๋‚ด์šฉ์€ ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹2 ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋žต๋œ ๋‚ด์šฉ์ด๋‚˜ ์ถ”๊ฐ€๋œ ๋‚ด์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. [4.1] ์„ ํ˜• ํšŒ๊ท€ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์˜ ์˜ˆ์ธก $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... +\theta_n x_n$ $y = h_\theta(x) = \theta \cdot x$ $y$๋Š” ์˜ˆ์ธก๊ฐ’, $n$ ์€ ํŠน์„ฑ์˜ ์ˆ˜, $x_i$๋Š” $i$๋ฒˆ์งธ ํŠน์„ฑ๊ฐ’, $\theta_j$๋Š” $j$๋ฒˆ์งธ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ง€ํ‘œ ํ‰๊ท  ์ œ๊ณฑ๊ทผ ์˜ค์ฐจ(RMSE) : $\sqrt{MSE(\theta)}$ RMSE๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” $\theta$๋ฅผ ์ฐพ์•„์•ผ ํ•œ๋‹ค ์ •๊ทœ ๋ฐฉ์ •์‹ $\theta = (X^TX)^{-1}X^Ty$ $\theta$ ๋Š” ๋น„์šฉ ํ•จ์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฐ’์ด๋‹ค. $y$๋Š” $y^{1}$..

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 3 ์š”์•ฝ

๋ณธ ๋‚ด์šฉ์€ ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹2 ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋žต๋œ ๋‚ด์šฉ์ด๋‚˜ ์ถ”๊ฐ€๋œ ๋‚ด์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. [3.2] SGDClassifier ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์„ ํ˜• ๋ชจ๋ธ์„ ๊ตฌํ˜„ from sklearn.linear_model import SGDClassifier sgd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random_state=42) sgd_clf.fit(X_train, y_train) [Tip] SGDClassifier๋Š” ํ›ˆ๋ จํ•˜๋Š” ๋ฐ ๋ฌด์ž‘์œ„์„ฑ์„ ์‚ฌ์šฉ. ๋”ฐ๋ผ์„œ ๊ฒฐ๊ณผ๋ฅผ ์žฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ random_state ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ง€์ •ํ•ด์•ผํ•จ [3.3] ์„ฑ๋Šฅ ์ธก์ • ๋ฐฉ๋ฒ• ๊ต์ฐจ ๊ฒ€์ฆ ๊ต์ฐจ ๊ฒ€์ฆ์ด๋ž€ ์‰ฝ๊ฒŒ ๋งํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐ˜๋ณตํ•ด์„œ ๋‚˜๋ˆ„๊ณ  ์—ฌ๋Ÿฌ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜์—ฌ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š”..

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 3์žฅ ์—ฐ์Šต๋ฌธ์ œ ํ’€์ด

1. MNIST ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ๋งŒ๋“ค์–ด ํ…Œ์ŠคํŠธ ์„ธํŠธ์—์„œ 97% ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•ด๋ณด์„ธ์š”. from sklearn.datasets import fetch_openml import numpy as np mnist = fetch_openml('mnist_784', version = 1) X, y = mnist["data"], mnist["target"] y = y.astype(np.int) #Train, Test set ๋‚˜๋ˆ„๊ธฐ X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] from sklearn.neighbors import KNeighborsClassifier knn_clf = KNeighborsClassifier..

velpegor
'ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹' ํƒœ๊ทธ์˜ ๊ธ€ ๋ชฉ๋ก