resnet

Paper Review

Deep Residual Learning for Image Recognition

[๋…ผ๋ฌธ๋ฆฌ๋ทฐ] ABSTRACT ์ด์ „์˜ ํ•™์Šต ๋ฐฉ๋ฒ•๋ณด๋‹ค ๊นŠ์€ ๋„คํŠธ์›Œํฌ์˜ ํ•™์Šต์„ ์ข€ ๋” ์šฉ์ดํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. Residual networks๊ฐ€ ์ตœ์ ํ™”ํ•˜๊ธฐ ๋” ์‰ฝ๊ณ , Depth๊ฐ€ ์ฆ๊ฐ€๋œ ๋ชจ๋ธ์—์„œ๋„ ์ƒ๋‹นํžˆ ์ฆ๊ฐ€๋œ ์ •ํ™•๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. INTRODUCTION Is learning better networks as easy as stacking more layers? ๋” ๋‚˜์€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ๋” ๋งŽ์€ ๊ณ„์ธต์„ ์Œ“๋Š” ๊ฒƒ๋งŒํผ ์‰ฌ์šด๊ฐ€? ์œ„ ๊ทธ๋ฆผ์—์„œ layer๊ฐ€ ๋” ๊นŠ์€ ๋นจ๊ฐ„์ƒ‰์ด error๊ฐ€ ๋” ๋†’์€ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. layer๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก gradient๊ฐ€ vanishing/exploding ํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์กด์žฌํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋Š” normalized initialization, b..

velpegor
'resnet' ํƒœ๊ทธ์˜ ๊ธ€ ๋ชฉ๋ก