ํ•ธ์ฆˆ์˜จ๋จธ์‹ ๋Ÿฌ๋‹

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 10 ์š”์•ฝ

๋ณธ ๋‚ด์šฉ์€ ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹2 ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋žต๋œ ๋‚ด์šฉ์ด๋‚˜ ์ถ”๊ฐ€๋œ ๋‚ด์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. [10.1] ์ƒ๋ฌผํ•™์  ๋‰ด๋Ÿฐ์—์„œ ์ธ๊ณต ๋‰ด๋Ÿฐ๊นŒ์ง€ [10.1.2] ๋‰ด๋Ÿฐ์„ ์‚ฌ์šฉํ•œ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ ๋งค์šฐ ๋‹จ์ˆœํ•œ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋Š”๋ฐ, ๊ทธ๊ฒƒ์ด ์ธ๊ณต ๋‰ด๋Ÿฐ ๋…ผ๋ฆฌ ๋ช…์ œ ๊ณ„์‚ฐ ๊ฐ€๋Šฅ ์ฒซ ๋ฒˆ์งธ ๋„คํŠธ์›Œํฌ ํ•ญ๋“ฑ ํ•จ์ˆ˜ ๋‰ด๋Ÿฐ A ํ™œ์„ฑํ™”, ๋‰ด๋Ÿฐ C ํ™œ์„ฑํ™” ๋‰ด๋Ÿฐ A ๋น„ํ™œ์„ฑํ™”, ๋‰ด๋Ÿฐ C ๋น„ํ™œ์„ฑํ™” ๋‘ ๋ฒˆ์žฌ ๋„คํŠธ์›Œํฌ ๋…ผ๋ฆฌ๊ณฑ ์—ฐ์‚ฐ A, B ๋ชจ๋‘ ํ™œ์„ฑํ™”๋  ๋•Œ ํ™œ์„ฑํ™” ์„ธ ๋ฒˆ์งธ ๋„คํŠธ์›Œํฌ A, B ์ค‘ ํ•˜๋‚˜๊ฐ€ ํ™œ์„ฑํ™”๋˜๋ฉด C๋„ ํ™œ์„ฑํ™” ๋„ค ๋ฒˆ์งธ ๋„คํŠธ์›Œํฌ ๋‰ด๋Ÿฐ A๊ฐ€ ํ™œ์„ฑํ™”๋˜๊ณ  ๋‰ด๋Ÿฐ B๊ฐ€ ๋น„ํ™œ์„ฑํ™”๋  ๋•Œ ๋‰ด๋Ÿฐ C๊ฐ€ ํ™œ์„ฑํ™”๋ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ๋‰ด๋Ÿฐ A๊ฐ€ ํ•ญ์ƒ ํ™œ์„ฑํ™”๋˜์–ด ์žˆ๋‹ค๋ฉด ์ด ๋„คํŠธ์›Œํฌ๋Š” ๋…ผ๋ฆฌ ๋ถ€์ • ์—ฐ์‚ฐ์ด ๋ฉ๋‹ˆ๋‹ค. ์ฆ‰, ๋‰ด๋Ÿฐ B๊ฐ€ ๋น„ํ™œ์„ฑํ™”๋  ๋•Œ ๋‰ด๋Ÿฐ C๊ฐ€ ํ™œ์„ฑํ™”๋˜๊ณ , ..

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 8 ์š”์•ฝ

๋ณธ ๋‚ด์šฉ์€ ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹2 ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋žต๋œ ๋‚ด์šฉ์ด๋‚˜ ์ถ”๊ฐ€๋œ ๋‚ด์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. [8.1] ์ฐจ์›์˜ ์ €์ฃผ ํ›ˆ๋ จ ์ƒ˜ํ”Œ ๊ฐ๊ฐ์ด ๋งŽ์€ ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š”๋ฐ ์ด๋Ÿฐ ๋งŽ์€ ํŠน์„ฑ์€ ํ›ˆ๋ จ์„ ๋Š๋ฆฌ๊ฒŒ ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ข‹์€ ์†”๋ฃจ์…˜์„ ์ฐพ๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฐ ๋ฌธ์ œ๋ฅผ ์ข…์ข… ์ฐจ์›์˜ ์ €์ฃผ๋ผ๊ณ  ํ•œ๋‹ค. ํ›ˆ๋ จ ์„ธํŠธ์˜ ์ฐจ์›์ด ํด์ˆ˜๋ก ๊ณผ๋Œ€์ ํ•ฉ ์œ„ํ—˜์ด ์ปค์ง„๋‹ค. ์ฐจ์›์˜ ์ €์ฃผ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ํ•ด๊ฒฐ์ฑ… ์ค‘ ํ•˜๋‚˜๋Š” ํ›ˆ๋ จ ์ƒ˜ํ”Œ์˜ ๋ฐ€๋„๊ฐ€ ์ถฉ๋ถ„ํžˆ ๋†’์•„์งˆ ๋•Œ๊นŒ์ง€ ํ›ˆ๋ จ ์„ธํŠธ์˜ ํฌ๊ธฐ๋ฅผ ํ‚ค์šฐ๋Š” ๊ฒƒ [8.2] ์ฐจ์› ์ถ•์†Œ๋ฅผ ์œ„ํ•œ ์ ‘๊ทผ ๋ฐฉ๋ฒ• [8.2.1] ํˆฌ์˜ ๋ชจ๋“  ํ›ˆ๋ จ ์ƒ˜ํ”Œ์ด ๊ณ ์ฐจ์› ๊ณต๊ฐ„ ์•ˆ์˜ ์ €์ฐจ์› ๋ถ€๋ถ„๊ณต๊ฐ„์— ๋†“์—ฌ ์žˆ๋‹ค. ๋ชจ๋“  ์ƒ˜ํ”Œ์ด 2์ฐจ์› ๊ณต๊ฐ„์— ๊ฐ€๊น๊ฒŒ ๋ฐฐ์น˜๋˜์–ด ์žˆ๋‹ค. ์œ„ ์‚ฌ์ง„์„ 2์ฐจ์› ๋ถ€๋ถ„ ๊ณต๊ฐ„์— ์ˆ˜์ง์œผ๋กœ ํˆฌ์˜ํ•˜์—ฌ 2D ๋ฐ์ดํ„ฐ์…‹์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ..

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 5 ์š”์•ฝ

๋ณธ ๋‚ด์šฉ์€ ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹2 ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋žต๋œ ๋‚ด์šฉ์ด๋‚˜ ์ถ”๊ฐ€๋œ ๋‚ด์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. [5.1] ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM) ์„ ํ˜•์ด๋‚˜ ๋น„์„ ํ˜• ๋ถ„๋ฅ˜, ํšŒ๊ท€, ์ด์ƒ์น˜ ํƒ์ƒ‰์—๋„ ์‚ฌ์šฉ๊ฐ€๋Šฅํ•œ ๋‹ค๋ชฉ์  ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ SVM์˜ ๊ธฐ๋ณธ ์•„์ด๋””์–ด๋Š” ๋ผ์ง€ ๋งˆ์ง„ ๋ถ„๋ฅ˜๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ฐ ํด๋ž˜์Šค ์‚ฌ์ด์— ๊ฐ€์žฅ ํญ์ด ๋„“์€ ๋„๋กœ๋ฅผ ์ฐพ๋Š” ๊ฒƒ ๋„๋กœ ๊ฒฝ๊ณ„์— ์œ„์น˜ํ•œ ์ƒ˜ํ”Œ์„ ์„œํฌํŠธ ๋ฒกํ„ฐ๋ผ๊ณ  ํ•œ๋‹ค. SVM์€ ํŠน์„ฑ์˜ ์Šค์ผ€์ผ์— ๋ฏผ๊ฐํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์ดํ‚ท๋Ÿฐ์˜ StandardScaler๋ฅผ ์‚ฌ์šฉํ•ด๋ณด์ž ํ•˜๋“œ ๋งˆ์ง„ ๋ถ„๋ฅ˜ ๋ชจ๋“  ์ƒ˜ํ”Œ์ด ๋„๋กœ ๋ฐ”๊นฅ์ชฝ์— ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๋ถ„๋ฅ˜ ๋ฐ์ดํ„ฐ๊ฐ€ ์„ ํ˜•์ ์œผ๋กœ ๊ตฌ๋ถ„๋  ์ˆ˜ ์žˆ์–ด์•ผ ์ž‘๋™ํ•จ ์ด์ƒ์น˜์— ๋ฏผ๊ฐํ•˜๋‹ค. ์†Œํ”„ํŠธ ๋งˆ์ง„ ๋ถ„๋ฅ˜ ํ•˜๋“œ ๋งˆ์ง„์—์„œ ์ข€ ๋” ์œ ์—ฐํ•œ ํ˜•ํƒœ์˜ ๋ชจ๋ธ ์ƒ˜ํ”Œ์ด ๋„๋กœ ์ค‘๊ฐ„์— ์žˆ๊ฑฐ๋‚˜, ๋ฐ˜๋Œ€์ชฝ์— ์žˆ๋Š” ๊ฒฝ์šฐ์ธ ๋งˆ์ง„ ์˜ค๋ฅ˜ ์‚ฌ์ด์— ์ ์ ˆ..

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 4 ์š”์•ฝ

๋ณธ ๋‚ด์šฉ์€ ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹2 ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋žต๋œ ๋‚ด์šฉ์ด๋‚˜ ์ถ”๊ฐ€๋œ ๋‚ด์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. [4.1] ์„ ํ˜• ํšŒ๊ท€ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์˜ ์˜ˆ์ธก $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... +\theta_n x_n$ $y = h_\theta(x) = \theta \cdot x$ $y$๋Š” ์˜ˆ์ธก๊ฐ’, $n$ ์€ ํŠน์„ฑ์˜ ์ˆ˜, $x_i$๋Š” $i$๋ฒˆ์งธ ํŠน์„ฑ๊ฐ’, $\theta_j$๋Š” $j$๋ฒˆ์งธ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ง€ํ‘œ ํ‰๊ท  ์ œ๊ณฑ๊ทผ ์˜ค์ฐจ(RMSE) : $\sqrt{MSE(\theta)}$ RMSE๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” $\theta$๋ฅผ ์ฐพ์•„์•ผ ํ•œ๋‹ค ์ •๊ทœ ๋ฐฉ์ •์‹ $\theta = (X^TX)^{-1}X^Ty$ $\theta$ ๋Š” ๋น„์šฉ ํ•จ์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฐ’์ด๋‹ค. $y$๋Š” $y^{1}$..

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 3 ์š”์•ฝ

๋ณธ ๋‚ด์šฉ์€ ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹2 ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋žต๋œ ๋‚ด์šฉ์ด๋‚˜ ์ถ”๊ฐ€๋œ ๋‚ด์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. [3.2] SGDClassifier ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์„ ํ˜• ๋ชจ๋ธ์„ ๊ตฌํ˜„ from sklearn.linear_model import SGDClassifier sgd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random_state=42) sgd_clf.fit(X_train, y_train) [Tip] SGDClassifier๋Š” ํ›ˆ๋ จํ•˜๋Š” ๋ฐ ๋ฌด์ž‘์œ„์„ฑ์„ ์‚ฌ์šฉ. ๋”ฐ๋ผ์„œ ๊ฒฐ๊ณผ๋ฅผ ์žฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ random_state ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ง€์ •ํ•ด์•ผํ•จ [3.3] ์„ฑ๋Šฅ ์ธก์ • ๋ฐฉ๋ฒ• ๊ต์ฐจ ๊ฒ€์ฆ ๊ต์ฐจ ๊ฒ€์ฆ์ด๋ž€ ์‰ฝ๊ฒŒ ๋งํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐ˜๋ณตํ•ด์„œ ๋‚˜๋ˆ„๊ณ  ์—ฌ๋Ÿฌ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜์—ฌ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š”..

AI/Machine Learning

[ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹ 2ํŒ] Chapter 3์žฅ ์—ฐ์Šต๋ฌธ์ œ ํ’€์ด

1. MNIST ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ๋งŒ๋“ค์–ด ํ…Œ์ŠคํŠธ ์„ธํŠธ์—์„œ 97% ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•ด๋ณด์„ธ์š”. from sklearn.datasets import fetch_openml import numpy as np mnist = fetch_openml('mnist_784', version = 1) X, y = mnist["data"], mnist["target"] y = y.astype(np.int) #Train, Test set ๋‚˜๋ˆ„๊ธฐ X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] from sklearn.neighbors import KNeighborsClassifier knn_clf = KNeighborsClassifier..

velpegor
'ํ•ธ์ฆˆ์˜จ๋จธ์‹ ๋Ÿฌ๋‹' ํƒœ๊ทธ์˜ ๊ธ€ ๋ชฉ๋ก