Paper Review

Deep Residual Learning for Image Recognition

2022. 12. 26. 15:27
๋ชฉ์ฐจ
  1. [๋…ผ๋ฌธ๋ฆฌ๋ทฐ]
  2. ABSTRACT
  3. INTRODUCTION
  4. Deep Residual Learning
  5. Experiments
  6. Conclusion

[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]


ABSTRACT

  • ์ด์ „์˜ ํ•™์Šต ๋ฐฉ๋ฒ•๋ณด๋‹ค ๊นŠ์€ ๋„คํŠธ์›Œํฌ์˜ ํ•™์Šต์„ ์ข€ ๋” ์šฉ์ดํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค.
  • Residual networks๊ฐ€ ์ตœ์ ํ™”ํ•˜๊ธฐ ๋” ์‰ฝ๊ณ , Depth๊ฐ€ ์ฆ๊ฐ€๋œ ๋ชจ๋ธ์—์„œ๋„ ์ƒ๋‹นํžˆ ์ฆ๊ฐ€๋œ ์ •ํ™•๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

INTRODUCTION

Layers์— ๋”ฐ๋ฅธ Erorr ์„ฑ๋Šฅ

  • Is learning better networks as easy as stacking more layers? 
    • ๋” ๋‚˜์€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ๋” ๋งŽ์€ ๊ณ„์ธต์„ ์Œ“๋Š” ๊ฒƒ๋งŒํผ ์‰ฌ์šด๊ฐ€?
  • ์œ„ ๊ทธ๋ฆผ์—์„œ layer๊ฐ€ ๋” ๊นŠ์€ ๋นจ๊ฐ„์ƒ‰์ด error๊ฐ€ ๋” ๋†’์€ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.
  • layer๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก gradient๊ฐ€ vanishing/exploding ํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์กด์žฌํ•œ๋‹ค.
    • ์ด ๋ฌธ์ œ๋Š” normalized initialization, batch normalization ๋“ฑ์œผ๋กœ ํ•ด๊ฒฐ์ด ๊ฐ€๋Šฅํ•˜๋‹ค.
  • ๋„คํŠธ์›Œํฌ์˜ ๊นŠ์ด๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉด accuracy๊ฐ€ saturatedํ•œ ์ƒํƒœ๊ฐ€ ๋˜๊ณ  ๊ทธ ์ดํ›„ ๋น ๋ฅด๊ฒŒ ๊ฐ์†Œ๋œ๋‹ค. 
    • ์ด ๋ฌธ์ œ๋Š” ๊ณผ์ ํ•ฉ์˜ ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋ฉฐ, ๋” ๋งŽ์€ ๋ ˆ์ด์–ด๋ฅผ ์ถ”๊ฐ€ํ•˜๋ฉด ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ์ด๋‹ค.
  • ๋” ์–•์€ ๋ชจ๋ธ๊ณผ ๋” ๋งŽ์€ layer๋ฅผ ์ถ”๊ฐ€ํ•œ ๋ชจ๋ธ์„ ๊ณ ๋ คํ•˜๋ฉด ์ถ”๊ฐ€๋œ layer๋Š” identity mapping์ด๊ณ , ๋‹ค๋ฅธ layer๋Š” ํ•™์Šต๋œ ์–•์€ ๋ชจ๋ธ์—์„œ ๋ณต์‚ฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋” ๊นŠ์€ ๋ชจ๋ธ์ด ๋” ์–•์€ ๋ชจ๋ธ๋ณด๋‹ค ๋” ๋†’์€ training error๋ฅผ ์ƒ์„ฑํ•˜์ง€ ์•Š์•„์•ผํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹คํ—˜์— ๋”ฐ๋ฅด๋ฉด ํ˜„์žฌ ๋” ๋‚˜์€ ์†”๋ฃจ์…˜์„ ์ฐพ์„ ์ˆ˜ ์—†๋‹ค.

Deep Residual Learning

Residual Learning

Residual Network

  • ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” deep residual learning framework๋ฅผ ์ œ์•ˆํ•˜์—ฌ degradation ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค.
  • ResNet์˜ Residual Learning์€ H(x)๊ฐ€ ์•„๋‹Œ ์ถœ๋ ฅ๊ณผ ์ž…๋ ฅ์˜ ์ฐจ์ธ H(x) - x๋ฅผ ์–ป๋„๋ก ๋ชฉํ‘œ๋ฅผ ์ˆ˜์ •
  • Residual Function์ธ F(x) = H(x) - x๋ฅผ ์ตœ์†Œํ™”ํ•ด์•ผํ•œ๋‹ค. ์ฆ‰, ์ถœ๋ ฅ๊ณผ ์ž…๋ ฅ์˜ ์ฐจ์ด๋ฅผ ์ค„์ธ๋‹ค๋Š” ์˜๋ฏธ์ด๋‹ค.
  • ์—ฌ๊ธฐ์—์„œ x๋Š” ๋„์ค‘์— ๋ณ€๊ฒฝ์ด ๋ถˆ๊ฐ€๋Šฅํ•œ ์ž…๋ ฅ๊ฐ’์ด๋ฏ€๋กœ F(x)๊ฐ€ 0์ด ๋˜๋Š” ๊ฒƒ์ด ์ตœ์ ์˜ ํ•ด์ด๋‹ค. ๋”ฐ๋ผ์„œ H(x) = x, H(x)๋ฅผ x๋กœ mapping ํ•˜๋Š” ๊ฒƒ์ด ํ•™์Šต์˜ ๋ชฉํ‘œ๊ฐ€ ๋œ๋‹ค.
  • ์ด์ „์—๋Š” ์•Œ์ง€ ๋ชปํ•˜๋Š” ์ตœ์ ์˜ ๊ฐ’์œผ๋กœ H(x)๋ฅผ ๊ทผ์‚ฌ์‹œ์ผœ์•ผ ํ•ด์„œ ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋Š”๋ฐ, ์ด์ œ๋Š” H(x) = x๋ผ๋Š” ์ตœ์ ์˜ ๋ชฉํ‘œ๊ฐ’์ด ์กด์žฌํ•˜๊ธฐ์— F(x)์˜ ํ•™์Šต์ด ๋”์šฑ ์‰ฌ์›Œ์ง„๋‹ค.

Identity Mapping

$ y = F(x, {W_i}) + x. $

 

  • x์™€ y๋Š” ์ธํ’‹๊ณผ ์•„์›ƒํ’‹ ๋ฒกํ„ฐ์ด๋‹ค.
  • Function $ F(x,{W_i}) $๋Š” ํ•™์Šต๋  residual mapping์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.
  • $ F = W_2\sigma(W_1x) $ ์—์„œ $ \sigma $๋Š” ReLU๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.
  • $ F + x $๋Š” shortcut connection์™€ element-wise addition์— ์˜ํ•ด ์ˆ˜ํ–‰๋œ๋‹ค. 
  • ์œ„ ์ˆ˜์‹์—์„œ๋Š” x์™€ F์˜ ์ฐจ์›์ด ๊ฐ™๋‹ค.
  • ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜์™€ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ฆ๊ฐ€์‹œ์ง€ ์•Š๋Š”๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค.

$ y = F(x, {W_i}) + W_s x $

  • ์ฐจ์›์ด ๊ฐ™์ด ์•Š์„ ๊ฒฝ์šฐ Shortcut connection์— ์ •์‚ฌ๊ฐํ˜• ํ–‰๋ ฌ W_s๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

Network Atrchitectures 

  • Plain nets๊ณผ Residual nets์„ ๋น„๊ตํ•˜์˜€๋‹ค.

VGG / Plain / Residual

  • input๊ณผ output dimension์ด ๋‹ค๋ฅธ ๊ฒฝ์šฐ ์ ์„ ์œผ๋กœ ํ‘œ์‹œํ•œ๋‹ค.

Implementation

  • mini-batch(256 size) SGD ์‚ฌ์šฉ
  • learning rate๋Š” 0.1๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ error๊ฐ€ ์•ˆ์ •๋˜๋ฉด 10์œผ๋กœ ๋‚˜๋ˆ”
  • 0.0001์˜ weight decay์™€ 0.9์˜ momentum์„ ์‚ฌ์šฉ
  • Convolution ์งํ›„์™€ Activation ์ด์ „์— batch normalization์„ ์ˆ˜ํ–‰

Experiments

  • Plain Networks : 34-layer๊ฐ€ ๋” ๋†’์€ error๋ฅผ ๋ณด์ธ๋‹ค.
    • training error๋„ ๋†’์•˜๊ธฐ ๋•Œ๋ฌธ์— degradation ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค๊ณ  ํŒ๋‹จ
    • ์ด๋Ÿฌํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ๋Š” Vanishing gradient ๋•Œ๋ฌธ์— ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋ผ ํŒ๋‹จ -> plain ๋ชจ๋ธ์€ batch normalization์ด ์ ์šฉ๋˜์–ด ์ˆœ์ „ํŒŒ ๊ณผ์ •์—์„œ variance๋Š” 0์ด ์•„๋‹ˆ๋ฉฐ, ์—ญ์ „ํŒŒ ๊ณผ์ •์—์„œ์˜ ๊ธฐ์šธ๊ธฐ ๋˜ํ•œ ์ž˜ ๋‚˜ํƒ€๋ƒˆ๊ธฐ ๋•Œ๋ฌธ
    • exponentially low convergence rate๋ฅผ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์— training error์˜ ๊ฐ์†Œ์— ์ข‹์ง€ ๋ชปํ•œ ์˜ํ–ฅ์„ ๋ผ์ณค์„ ๊ฒƒ์ด๋ผ ์ถ”์ธกํ•จ.
  • Residual Networks : ๋ฒ ์ด์Šค๋ผ์ธ์€ Plaine net๊ณผ ๋™์ผํ•˜๊ฒŒ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ 34-layer๊ฐ€ ๋” ๋‚ฎ์€ error๋ฅผ ๋ณด์˜€๋‹ค. 
    • Shortcut connection์ด ๊ฐ 3 x 3 ํ•„ํ„ฐ์— ์ถ”๊ฐ€๋˜์—ˆ๋‹ค.
    • ๋ชจ๋“  shortcuts์— identity mapping์„ ์‚ฌ์šฉํ•˜์˜€๊ณ  ์ฐจ์› ์ฆ๊ฐ€๋ฅผ ์œ„ํ•ด zero-padding์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.
    • ๋”ฐ๋ผ์„œ plain๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ์ถ”๊ฐ€์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์—†๋‹ค.

Identity vs Projection Shortcuts

  • identity shortcuts์ด training์— ๋„์›€์ด ๋œ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์Œ์œผ๋กœ projection shortcuts์— ๋Œ€ํ•ด ์กฐ์‚ฌํ•˜์˜€๋‹ค.
  • (A) ์ฆ๊ฐ€ํ•˜๋Š” ์ฐจ์›์— ๋Œ€ํ•ด zero-padding shortcut, ๋ชจ๋“  shortcut์€ parameter free
  • (B) ์ฆ๊ฐ€ํ•˜๋Š” ์ฐจ์›์— ๋Œ€ํ•ด Projection shortcut ์ ์šฉ, ๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด identity shortcut ์ ์šฉ
  • (C) ๋ชจ๋“  ๊ฒฝ์šฐ์— Projection shortcut ์ ์šฉ
    • (B)๊ฐ€ (A)๋ณด๋‹ค ๋ฏธ์„ธํ•˜๊ฒŒ ๋” ์ข‹์•˜๋‹ค. -> A์˜ zero-padding ์ฐจ์›์ƒ ์‚ฌ์‹ค์ƒ residual-learning์ด ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ ์ถ”์ธก
    • (C)๊ฐ€ (B)๋ณด๋‹ค ๋ฏธ์„ธํ•˜๊ฒŒ ๋” ์ข‹์•˜๋‹ค. -> Projection shortcut์— ์˜ํ•ด ์ถ”๊ฐ€์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์ƒ๊ฒผ๊ธฐ ๋•Œ์ด๋ผ๊ณ  ์ถ”์ธก
  • ๋ฉ”๋ชจ๋ฆฌ/์‹œ๊ฐ„ ๋ณต์žก๋„์™€ ๋ชจ๋ธ์˜ ์‚ฌ์ด์ฆˆ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด (C)๋Š” ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ธฐ๋กœ ๊ฒฐ์ •ํ•˜์˜€๋‹ค.
  • (A)(B)(C) ๊ฐ„์˜ ๋ฏธ์„ธํ•œ ์ฐจ์ด๋Š” projection shortcut์€ degradation ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋Š”๋ฐ ์ค‘์š”ํ•œ ์š”์†Œ๊ฐ€ ์•„๋‹˜์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

Deeper Bottleneck Architectures

  • layer๋ฅผ ์Œ“์„์ˆ˜๋ก dimension์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง์— ๋”ฐ๋ผ, ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ˆ˜๊ฐ€ ๋งŽ์•„์ง€๊ณ  ๋ณต์žก๋„๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด bottleneck architecture๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.
  • ํ•™์Šต์— ํˆฌ์žํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ๊ฐ„์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, building block์„ bottleneck ๋””์ž์ธ์œผ๋กœ ์ˆ˜์ •ํ•˜์˜€๋‹ค.
  • 2๊ฐœ์˜ layer ๋Œ€์‹  3๊ฐœ์˜ layer stack์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.
    • 1 x 1 layer๋Š” ์ฐจ์›์„ ์ค„์ด๊ณ  ๋Š˜๋ฆฌ๋Š” ์—ญํ• 
    • 3 x 3 layer๋Š” ๋” ์ž‘์€ input๊ณผ output ์ฐจ์›์˜ bottleneck ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค์–ด์ค€๋‹ค.

left : identity shortcut / right : projection shortcut

  • ์—ฌ๊ธฐ์„œ parameter-free์ธ identity shortcut์€ bottleneck ๊ตฌ์กฐ์—์„œ ํŠนํžˆ ์ค‘์š”ํ•˜๋‹ค. ๋งŒ์•ฝ identity shortcut์ด projection shortcut์œผ๋กœ ๋Œ€์ฒด๋˜๋ฉด shortcut์ด 2๊ฐœ์˜ ๊ณ ์ฐจ์› ์ถœ๋ ฅ๊ณผ ์—ฐ๊ฒฐ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ชจ๋ธ์˜ ๋ณต์žก๋„์™€ ํฌ๊ธฐ๊ฐ€ 2๋ฐฐ๊ฐ€ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ identity shortcut์ด bottleneck ๋””์ž์ธ์—์„œ ํšจ์œจ์ ์ธ ๋ชจ๋ธ๋กœ ์ด๋Œ์–ด์ค€๋‹ค.
  • ์‹คํ—˜ ๊ฒฐ๊ณผ 152 layer๊นŒ์ง€๋„ 34 layer๋ณด๋‹ค ๋” ์ •ํ™•ํ•จ.

Conclusion

  • ๊ฒฐ๊ณผ์ ์œผ๋กœ residual learning์„ ๋„์ž…ํ•œ Resnet์„ ํ†ตํ•ด ๊นŠ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ error๊ฐ€ ๊ฐ์†Œํ•˜๊ณ , plain network๋ณด๋‹ค ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค.
    • degration ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•จ
    • ๊ธฐ์กด์˜ mapping๋ณด๋‹ค optimizeํ•˜๊ธฐ ์‰ฝ๋‹ค. (H(x) = F(x) + x)
    • ๊ธฐ์กด์˜ model๋ณด๋‹ค ๋” ๊นŠ์€ layer์™€ ์ ์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ํ†ตํ•ด ๋น ๋ฅธ ํ›ˆ๋ จ ์†๋„๋ฅผ ๊ฐ€์ง„๋‹ค.

 

'Paper Review' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

Understanding the difficulty of training deep feedforward neural networks  (0) 2022.12.28
Batch Normalization : Accelerating Deep Network Training byReducing Internal Covariate Shift  (0) 2022.12.27
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION  (0) 2022.12.23
REFACING: RECONSTRUCTING ANONYMIZED FACIAL FEATURES USING GANS  (0) 2022.10.20
StarGAN: Unified Generative Adversarial Networks for Multi Domain Image-to-Image Translation  (0) 2022.10.08
  1. [๋…ผ๋ฌธ๋ฆฌ๋ทฐ]
  2. ABSTRACT
  3. INTRODUCTION
  4. Deep Residual Learning
  5. Experiments
  6. Conclusion
'Paper Review' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
  • Understanding the difficulty of training deep feedforward neural networks
  • Batch Normalization : Accelerating Deep Network Training byReducing Internal Covariate Shift
  • VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION
  • REFACING: RECONSTRUCTING ANONYMIZED FACIAL FEATURES USING GANS
velpegor
velpegor
velpegor
๐Ÿ’ป
velpegor
์ „์ฒด
์˜ค๋Š˜
์–ด์ œ
  • ALL (19)
    • Paper Review (11)
    • Book Review (0)
    • Projects (1)
    • AI (6)
      • Deep Learning (0)
      • Machine Learning (6)
    • Algorithm (0)
      • BOJ (0)
    • Backend (1)
      • Python (1)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

  • ํ™ˆ

๊ณต์ง€์‚ฌํ•ญ

์ธ๊ธฐ ๊ธ€

ํƒœ๊ทธ

  • ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹
  • ํ•ธ์ฆˆ์˜จ๋จธ์‹ ๋Ÿฌ๋‹
  • AI-hub
  • ์ฐจ์›์˜์ €์ฃผ
  • batch normalization
  • Xavier Initialization
  • ICLR
  • Transformer
  • vision transformer
  • ํ•ธ์ฆˆ์˜จ๋จธ์‹ ๋Ÿฌ๋‹2
  • ๋…ผ๋ฌธ๋ฆฌ๋ทฐ
  • VGG
  • FastAPI
  • AI ๊ณต๋ชจ์ „
  • YOLO
  • pruning
  • resnet
  • ๋”ฅ๋Ÿฌ๋‹
  • GAN
  • ์ฑ…๋ฆฌ๋ทฐ
  • ์ฑ… ๋ฆฌ๋ทฐ
  • Swin
  • token
  • Token Pruning
  • VGGNet
  • ํ•ด์ปคํ†ค
  • ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ
  • ๋จธ์‹ ๋Ÿฌ๋‹
  • ViT
  • ์„œํฌํŠธ๋ฒกํ„ฐ๋จธ์‹ 

์ตœ๊ทผ ๋Œ“๊ธ€

์ตœ๊ทผ ๊ธ€

hELLO ยท Designed By ์ •์ƒ์šฐ.
velpegor
Deep Residual Learning for Image Recognition
์ƒ๋‹จ์œผ๋กœ

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”

๊ฐœ์ธ์ •๋ณด

  • ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ
  • ํฌ๋Ÿผ
  • ๋กœ๊ทธ์ธ

๋‹จ์ถ•ํ‚ค

๋‚ด ๋ธ”๋กœ๊ทธ

๋‚ด ๋ธ”๋กœ๊ทธ - ๊ด€๋ฆฌ์ž ํ™ˆ ์ „ํ™˜
Q
Q
์ƒˆ ๊ธ€ ์“ฐ๊ธฐ
W
W

๋ธ”๋กœ๊ทธ ๊ฒŒ์‹œ๊ธ€

๊ธ€ ์ˆ˜์ • (๊ถŒํ•œ ์žˆ๋Š” ๊ฒฝ์šฐ)
E
E
๋Œ“๊ธ€ ์˜์—ญ์œผ๋กœ ์ด๋™
C
C

๋ชจ๋“  ์˜์—ญ

์ด ํŽ˜์ด์ง€์˜ URL ๋ณต์‚ฌ
S
S
๋งจ ์œ„๋กœ ์ด๋™
T
T
ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ ์ด๋™
H
H
๋‹จ์ถ•ํ‚ค ์•ˆ๋‚ด
Shift + /
โ‡ง + /

* ๋‹จ์ถ•ํ‚ค๋Š” ํ•œ๊ธ€/์˜๋ฌธ ๋Œ€์†Œ๋ฌธ์ž๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํ‹ฐ์Šคํ† ๋ฆฌ ๊ธฐ๋ณธ ๋„๋ฉ”์ธ์—์„œ๋งŒ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.