Paper Review

Convolutional Neural Network Pruning: A Survey

2022. 12. 30. 16:50
๋ชฉ์ฐจ
  1. [๋…ผ๋ฌธ๋ฆฌ๋ทฐ]
  2. ABSTRACT
  3. Introduction
  4. Pruning Method
  5. Training Strategy
  6. Estimation Criterion

[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]

 


ABSTRACT

  • Deep Convolutional neural networks๋Š” ์ง€๋‚œ ๋ช‡ ๋…„๋™์•ˆ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ๋ฐœ์ „์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค.
  • Deep Convolutional neural networks์€ ๋งŽ์€ ๋งค๊ฐœ๋ณ€์ˆ˜์™€ float operation์œผ๋กœ ์ธํ•ด ์—ฌ์ „ํžˆ ์–ด๋ ค์šด ๊ณผ์ œ๋กœ ๋‚จ์•„์žˆ๋‹ค.
  • ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ Convolutional neural network์˜ Pruning์ž‘์—…์— ๊ด€์‹ฌ์ด ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค.
  • Pruning ๋ฐฉ๋ฒ•, Training ์ „๋žต, ์ถ”์ • ๊ธฐ์ค€์˜ 3๊ฐ€์ง€ ์ฐจ์›์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜๋  ์ˆ˜ ์žˆ๋‹ค.

Key Words : Convolutional neural networks, machine intelligence, pruning method, training strategy, estimation citerion


Introduction

  • ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋” ๊นŠ๊ณ  ๋„“์€ ๋„คํŠธ์›Œํฌ๊ฐ€ ์„ค๊ณ„๋˜์–ด ๊ณ„์‚ฐ ๋Šฅ๋ ฅ์— ๋Œ€ํ•œ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค.
  • ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋ ค๋Š” ์ž‘์—…์—๋Š” ๋งŽ์€ ์ž์›์ด ๋“ ๋‹ค. ํ˜„๋Œ€ ๋„คํŠธ์›Œํฌ๋Š” ๋†’์€ ๋ฆฌ์†Œ์Šค๊ฐ€ ํ•„์š”๋กœ ํ•œ๋‹ค.
  • ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด Pruning์€ CNN์˜ ๊ณ„์‚ฐ์„ ์ค„์ผ ์ˆ˜ ์žˆ๊ณ , CNN์„ ๋ชจ๋ฐ”์ผ ๋ฐ ์ž„๋ฒ ๋””๋“œ ์žฅ์น˜์—์„œ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค.
  • Convolutional Neural Networkd Pruning ๋ฐฉ๋ฒ•์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ถ„๋ฅ˜ํ•œ๋‹ค.
    • Pruning Method : ์‚ฌ์ „์— Training Strategy(ํ›ˆ๋ จ ์ „๋žต)์™€ Estimation Criterion(์ถ”์ • ๊ธฐ์ค€)์„ ๊ฒฐ์ •ํ•œ๋‹ค. Pruning๋œ ๋ชจ๋ธ์€ non-structured pruning๊ณผ structured pruning์ด ์กด์žฌํ•œ๋‹ค.
    • Training Strategy : ๋งค๊ฐœ ๋ณ€์ˆ˜๋ฅผ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋Š” ๋งค๊ฒŒ ๋ณ€์ˆ˜๋กœ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋ฉฐ, hard์™€ soft, redundant(์ค‘๋ณต) ์ ‘๊ทผ๋ฒ•์œผ๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค.
    • Estimation Criterion : ์ถ”์ • ๊ธฐ์ค€์€ ์—ฌ๋Ÿฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์„ค๊ณ„๋  ์ˆ˜ ์žˆ๋‹ค. 

Pruning Method

Fig 1
Fig 2

  • ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Pruning ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ณ , ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ถ„๋ฅ˜ํ•œ๋‹ค.

Non-Structured Pruning

  • ์ดˆ๊ธฐ CNN Pruning์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ์ˆ˜๊ฐ€ ๋งŽ์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— covolution์˜ ๊ฐ€์ค‘์น˜์— ์ง‘์ค‘ํ•œ๋‹ค.
  • Pruning์€ ์‹คํ–‰ ์ค‘ ํ•„์š”ํ•œ ๊ณ„์‚ฐ์˜ ๋งŽ์€ ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•˜๋Š” ๋ถˆํ•„์š”ํ•œ ์—ฐ๊ฒฐ์„ 0์œผ๋กœ ๋งŒ๋“ ๋‹ค. ์ด๋Š” ์•„ํ‚คํ…์ฒ˜ ์ผ๊ด€์„ฑ์„ ์œ„ํ•ด ๊ฐ€์ค‘์น˜๋Š” ์ œ๊ฑฐ๋˜์ง€ ์•Š๊ณ  zeroํ™”๋  ์ˆ˜ ์žˆ๋‹ค.
  • Weight Pruning์€ ๋ชจ๋“  ๊ฐ€์ค‘์น˜์— ๋Œ€ํ•œ ์ขŒํ‘œ๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ์ด๋Š” ํ˜„์žฌ ํ™œ์šฉ๋˜๋Š” ๋ชจ๋ธ์—์„œ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์–ด๋ ต๋‹ค.
  • Weight zeroizing์˜ ์ฃผ์š” ๋ฌธ์ œ๋Š” ์ž˜๋ชป๋œ weight pruning์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ์œ„ํ•ด connection splicing ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค.
  • CNN์€ ๊ตฌ์กฐ์  ์ผ๊ด€์„ฑ์„ ์œ„ํ•ด 0 ํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•˜์—ฌ Non-Structured Pruning์™€ ์œ ์‚ฌํ•˜๊ฒŒ Pruned kernel์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.
  • Kernel Pruning์€ Non-Structured Pruning Process๋ฅผ ํฌ๊ฒŒ ๊ฐ€์†ํ™”ํ•˜๋ฉฐ ์ •ํ™•๋„์™€ Pruning ์†๋„ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ์ด๋ฃฐ ์ˆ˜ ์žˆ๋‹ค.
    • Kernel Pruning์€ ์ฃผ๋กœ ์ค‘๋ณต๋˜๋Š” ๋‘ ์ฐจ์›์˜ convolution kernel ์ œ๋กœํ™”ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค.

Structured Pruning

  • Structured Pruning์€ ๊ตฌ์กฐํ™”๋œ CNN ๋ถ€๋ถ„์„ ์ง์ ‘ ์ œ๊ฑฐํ•˜์—ฌ CNN์„ ์••์ถ•ํ•˜๊ณ  ์†๋„๋ฅผ ๋†’์ด๋Š” ๋™์‹œ์— ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์—์„œ ์ž˜ ์ง€๋œ๋‹ค.
  • Convolution network์—์„œ ์ƒ๋Œ€์ ์œผ๋กœ ํ•„์š”์—†๋Š” channel์„ ๋ฝ‘์•„์„œ ์–ด๋–ค ๊ตฌ์กฐ๋ฅผ ํ†ต์งธ๋กœ ๋‚ ๋ ค๋ฒ„๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.
  • ๋‹จ์ผ ํ•„ํ„ฐ ํ”„๋ฃจ๋‹์€ ์ถœ๋ ฅ Feature map demension์„ ์••์ถ•ํ•œ๋‹ค. ๋˜ํ•œ ๋‹ค์Œ ๊ณ„์ธต์˜ ์ปค๋„์€ CNN ์•„ํ‚คํ…์ณ์˜ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ œ๊ฑฐ๋˜์–ด์•ผํ•œ๋‹ค. ๋”ฐ๋ผ์„œ Structured Filter Pruning์€ Structured Filter-Kernel Pruning์ด๋‹ค. 
  • Structured Filter-Kernel Pruning์€ ํ›ˆ๋ จ ํ›„ ๋ฟ๋งŒ์•„๋‹ˆ๋ผ ํ›ˆ๋ จ ์ค‘์—๋„ ๊ตฌํ˜„๋  ์ˆ˜ ์žˆ๋‹ค.
  • Filter-Kernel Pruning์€ ์ƒˆ๋กœ์šด ์•„ํ‚คํ…์ณ๋ฅผ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๊ณ  ๋ชจ๋“  CNN๋ชจ๋ธ์—์„œ ์‹คํ˜„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋„๋ฆฌ ๊ตฌํ˜„๋œ๋‹ค. ๋”์šฑ์ด ํšจ์œจ์ ์œผ๋กœ ์ค‘๋ณต์„ฑ์„ ์ œ๊ฑฐํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํฐ ์ด์ ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.
  • Block Pruning์€ ๋ฆฌ๋ชจ๋ธ๋ง ๊ณผ์ •์— ๋” ๊ฐ€๊น๋‹ค. ๋ธ”๋ก ์ „์ฒด๋ฅผ Pruningํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ 0 ์ž…๋ ฅ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ฒฐ์ด ๋‚จ์•„์žˆ๋Š” ๋ธ”๋ก๋งŒ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. 
    • ์ผ๋ถ€ ํŠน์ˆ˜ ์•„ํ‚คํ…์ณ์˜ ๊นŠ์ด ์ค‘๋ณต์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ๊ฑฐ ๊ฐ€๋Šฅ
    • Structured Pruning ์ค‘์—์„œ Filter-Kernel Pruning์€ Blcok Pruning๋ณด๋‹ค ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์†๋„ ์ธก๋ฉด์—์„œ๋Š” Block Pruning์ด ์šฐ์„ธํ•˜๋‹ค.
    • Filter-Kernel Pruning๊ณผ ํ†ตํ•ฉํ•˜์—ฌ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. -> ๋” ๋†’์€ Pruning ์†๋„๋ฅผ ์‹คํ˜„ ๊ฐ€

Table 1
Fig 3


Training Strategy

Hard Pruning Strategy

  • ๋Œ€๋ถ€๋ถ„ ์„ ํ–‰ ์ž‘์—…์—์„œ ์‚ฌ์šฉ๋œ๋‹ค.
  • Fig 1์—์„œ 'Retraining' ์ ˆ์ฐจ์˜ training process์—์„œ ํ•จ๊ป˜ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ตฌํ˜„๋œ๋‹ค.
  • Fig 3์—์„œ ๋ณด๋Š” ๋ฐ”์™€ ๊ฐ™์ด, l ๋ฒˆ์งธ ๊ณ„์ธต์˜ ์ฒซ๋ฒˆ์งธ ํ•„ํ„ฐ์— ๋Œ€ํ•œ ์ฒซ๋ฒˆ์งธ ์ถœ๋ ฅ ํ”ผ์ณ๋งต์€ ๊ณต๋ฐฑ์ด๊ณ , ๊ทธ ๋‹ค์Œ ํ•„ํ„ฐ (l+1)๋ฒˆ์งธ ๊ณ„์ธต์˜ ์ฒซ๋ฒˆ์งธ ์ปค๋„์€ ์ œ๊ฑฐ๋  ๊ฒƒ์ด๋‹ค. -> ๋„คํŠธ์›Œํฌ๋Š” ์™ผ์ชฝ ๋ ˆ์ด์–ด์— ์˜ํ•ด ์žฌ๊ตฌ์„ฑ๋˜๊ณ  ์ •ํ™•๋„ ํšŒ๋ณต์„ ์œ„ํ•ด ์กฐ์ •์„ ํ•œ๋‹ค -> ํ•œ์ธต, ํ•œ์ธต ํ›ˆ๋ จ๊ณผ Pruning์ด ๋™์‹œ์— ๋๋‚œ๋‹ค.
  • ๋”ฐ๋ผ์„œ Hard Pruning Strategy๋Š” Structured Pruning์—์„œ๋งŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.
  • ์ตœ์ ์˜ ํƒ€๊ฒŸ์— ๋Œ€ํ•œ reconstruction error๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ hard pruning ์ค‘ ์ตœ๊ณ ์˜ ์„ฑ๋Šฅ์„ ์–ป๋Š”๋‹ค. 
  • Hard Pruning์€ ๋ฐ˜๋ณต์ ์ธ ๋ฏธ์„ธ ์กฐ์ • ํ”„๋กœ์„ธ์Šค์— ๋Œ€ํ•ด ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ํฌ๋‹ค.

Soft Pruning Strategy

Fig 4

  • non-structured weight pruning์—์„œ ๋ถˆํ•„์š”ํ•œ ๊ฐ€์ค‘์น˜๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์ค‘์น˜๋ฅผ Pruningํ•œ๋‹ค. 
  • Fig 4 (a)์™€ (b)์— ํ‘œ์‹œ๋œ ๊ฒƒ์ฒ˜๋Ÿผ Filter-Kernel Pruning ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ธฐ ์œ„ํ•ด Conv layer ๋’ค์— ์‚ฌ์šฉ๋œ๋‹ค.

Redundant Pruning Strategy

  • ์ด์ „ ์ž‘์—…๋“ค์€ ๋Œ€๋ถ€๋ถ„ ์ค‘๋ณต ๋งค๊ฐœ ๋ณ€์ˆ˜๋ฅผ ์ œ๋กœํ™”ํ•˜๋Š” ๊ฒƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. 
  • ์ค‘๋ณต ํ•™์Šต์œผ๋กœ ์ธํ•œ ์ƒˆ๋กœ์šด ์ด๋ก ์ด ์ œ์•ˆ๋˜๋Š”๋ฐ, Fig 4์˜ (c)์— ํ‘œ์‹œ๋œ ๊ฒƒ ์ฒ˜๋Ÿผ ์œ ์‚ฌํ•œ ํ•„ํ„ฐ๋ฅผ ๋™์ผํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ , ์ค‘๋ณต ํ•„ํ„ฐ๋ฅผ ๋‹ค๋“ฌ๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค.

Table 2

  • Table 2์ฒ˜๋Ÿผ Soft pruning ๋ฐ Redundant Pruning์€ Hard Pruning์™€ ๋Œ€์กฐ์ ์œผ๋กœ ์ตœ์ƒ์˜ ์„ฑ๋Šฅ์— ๋„๋‹ฌ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. 
  • Hard Pruning๋Š” ๋‘ ๊ฐ€์ง€๋ณด๋‹ค ๋” ๋งŽ์€ ํ›ˆ๋ จ ์‹œ๊ฐ„์ด ์†Œ๋ชจ๋œ๋‹ค.

Estimation Criterion

  • ์ถ”์ • ๊ธฐ์ค€์„ Importance-based, reconstruction-based, sparsity-based ๊ธฐ๋ฐ˜์˜ ์„ธ ๊ฐ€์ง€ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค.

Importance-based Criterion

  • ๋ณดํŽธ์ ์ธ Criterion์€ ๋” ํฐ norm์ด ๋” ๋งŽ์€ ์ •๋ณด๋ฅผ ํฌํ•จํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋” ์ž‘์€ ํ‘œ์ค€๊ฐ’์œผ๋กœ ๋งค๊ฐœ ๋ณ€์ˆ˜๋ฅผ ๋‹ค๋“ฌ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค.
  • Importance-based Criterion๋Š” ๋น ๋ฅธ ๊ณ„์‚ฐ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋„๋ฆฌ ์‚ฌ์šฉ๋œ๋‹ค.  

Sparsity-based Criterion

  • ๋” ๋†’์€ ์ฐจ์›์˜ ์ •๋ณด์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค.
  • ์œ ์‚ฌํ•œ ์ •๋ณด๋ฅผ ๊ณต์œ ํ•˜๋Š” ํ•„ํ„ฐ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœํ•˜์—ฌ, ์ด๋Š” ๋” ์ ์€ ๋งค๊ฐœ ๋ณ€์ˆ˜์™€ ์ถ”์ถœ ๋Šฅ๋ ฅ์ด ์žˆ๋‹ค.
  • Sparsity-based Criterion์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ ˆ์ด์–ด์—์„œ ํ•„ํ„ฐ๋ฅผ ํฌ์†Œํ™”ํ•˜๋Š” Filter-Scanner Pruning ๊ธฐ๋ฒ•๋„ ์žˆ๋‹ค.
  • ์ด๋Ÿฌํ•œ ์ข…๋ฅ˜์˜ ๋ฐฉ๋ฒ•์€ Non-structured and Structured Pruning์—์„œ ๊ฐ€์žฅ ๋‚ฎ์€ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๋‹ฌ์„ฑํ–ˆ๋‹ค.\

Reconstruction-based Criterion

  • ์œ„ ๋‘ ๊ฐ€์ง€ ์œ ํ˜•๊ณผ ๋‹ฌ๋ฆฌ Reconstruction-based Criterion์€ output feature map์— ์ง์ ‘ ์ดˆ์ ์„ ๋‘”๋‹ค. ์ฃผ์š” ์•„์ด๋””์–ด๋Š” Reconstruction error๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ Proning๋œ ๋ชจ๋ธ์€ ์‚ฌ์ „ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ตœ์ ์˜ ๊ทผ์‚ฌ์น˜๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. 
  • ์ถœ๋ ฅ์— ๋œ ์ค‘์š”ํ•œ ํ•„ํ„ฐ๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด Greedy ํƒ์ƒ‰์„ ์ œ์•ˆํ•œ๋‹ค. 

Table 3

  • Tabel 3์ฒ˜๋Ÿผ Importance-based Criterion ๋ฐ Sparsity-based Criterion์€ Reconstruction-based Criterion๋ณด๋‹ค ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค.

 

'Paper Review' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

TOKEN MERGING: YOUR VIT BUT FASTER  (0) 2023.03.28
Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration  (0) 2023.01.04
Understanding the difficulty of training deep feedforward neural networks  (0) 2022.12.28
Batch Normalization : Accelerating Deep Network Training byReducing Internal Covariate Shift  (0) 2022.12.27
Deep Residual Learning for Image Recognition  (0) 2022.12.26
  1. [๋…ผ๋ฌธ๋ฆฌ๋ทฐ]
  2. ABSTRACT
  3. Introduction
  4. Pruning Method
  5. Training Strategy
  6. Estimation Criterion
'Paper Review' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
  • TOKEN MERGING: YOUR VIT BUT FASTER
  • Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration
  • Understanding the difficulty of training deep feedforward neural networks
  • Batch Normalization : Accelerating Deep Network Training byReducing Internal Covariate Shift
velpegor
velpegor
velpegor
๐Ÿ’ป
velpegor
์ „์ฒด
์˜ค๋Š˜
์–ด์ œ
  • ALL (19)
    • Paper Review (11)
    • Book Review (0)
    • Projects (1)
    • AI (6)
      • Deep Learning (0)
      • Machine Learning (6)
    • Algorithm (0)
      • BOJ (0)
    • Backend (1)
      • Python (1)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

  • ํ™ˆ

๊ณต์ง€์‚ฌํ•ญ

์ธ๊ธฐ ๊ธ€

ํƒœ๊ทธ

  • ์ฑ…๋ฆฌ๋ทฐ
  • ํ•ธ์ฆˆ์˜จ๋จธ์‹ ๋Ÿฌ๋‹
  • ICLR
  • VGG
  • vision transformer
  • ๋จธ์‹ ๋Ÿฌ๋‹
  • token
  • Swin
  • VGGNet
  • FastAPI
  • ์ฐจ์›์˜์ €์ฃผ
  • batch normalization
  • ํ•ด์ปคํ†ค
  • Token Pruning
  • Transformer
  • ํ•ธ์ฆˆ์˜จ๋จธ์‹ ๋Ÿฌ๋‹2
  • ํ•ธ์ฆˆ์˜จ ๋จธ์‹ ๋Ÿฌ๋‹
  • ์ฑ… ๋ฆฌ๋ทฐ
  • resnet
  • YOLO
  • pruning
  • GAN
  • AI-hub
  • ViT
  • ๋”ฅ๋Ÿฌ๋‹
  • AI ๊ณต๋ชจ์ „
  • ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ
  • ์„œํฌํŠธ๋ฒกํ„ฐ๋จธ์‹ 
  • ๋…ผ๋ฌธ๋ฆฌ๋ทฐ
  • Xavier Initialization

์ตœ๊ทผ ๋Œ“๊ธ€

์ตœ๊ทผ ๊ธ€

hELLO ยท Designed By ์ •์ƒ์šฐ.
velpegor
Convolutional Neural Network Pruning: A Survey
์ƒ๋‹จ์œผ๋กœ

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”

๊ฐœ์ธ์ •๋ณด

  • ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ
  • ํฌ๋Ÿผ
  • ๋กœ๊ทธ์ธ

๋‹จ์ถ•ํ‚ค

๋‚ด ๋ธ”๋กœ๊ทธ

๋‚ด ๋ธ”๋กœ๊ทธ - ๊ด€๋ฆฌ์ž ํ™ˆ ์ „ํ™˜
Q
Q
์ƒˆ ๊ธ€ ์“ฐ๊ธฐ
W
W

๋ธ”๋กœ๊ทธ ๊ฒŒ์‹œ๊ธ€

๊ธ€ ์ˆ˜์ • (๊ถŒํ•œ ์žˆ๋Š” ๊ฒฝ์šฐ)
E
E
๋Œ“๊ธ€ ์˜์—ญ์œผ๋กœ ์ด๋™
C
C

๋ชจ๋“  ์˜์—ญ

์ด ํŽ˜์ด์ง€์˜ URL ๋ณต์‚ฌ
S
S
๋งจ ์œ„๋กœ ์ด๋™
T
T
ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ ์ด๋™
H
H
๋‹จ์ถ•ํ‚ค ์•ˆ๋‚ด
Shift + /
โ‡ง + /

* ๋‹จ์ถ•ํ‚ค๋Š” ํ•œ๊ธ€/์˜๋ฌธ ๋Œ€์†Œ๋ฌธ์ž๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํ‹ฐ์Šคํ† ๋ฆฌ ๊ธฐ๋ณธ ๋„๋ฉ”์ธ์—์„œ๋งŒ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.