๊ฒฝ๋Ÿ‰ํ™”

Paper Review

Convolutional Neural Network Pruning: A Survey

[๋…ผ๋ฌธ๋ฆฌ๋ทฐ] ABSTRACT Deep Convolutional neural networks๋Š” ์ง€๋‚œ ๋ช‡ ๋…„๋™์•ˆ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ๋ฐœ์ „์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค. Deep Convolutional neural networks์€ ๋งŽ์€ ๋งค๊ฐœ๋ณ€์ˆ˜์™€ float operation์œผ๋กœ ์ธํ•ด ์—ฌ์ „ํžˆ ์–ด๋ ค์šด ๊ณผ์ œ๋กœ ๋‚จ์•„์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ Convolutional neural network์˜ Pruning์ž‘์—…์— ๊ด€์‹ฌ์ด ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค. Pruning ๋ฐฉ๋ฒ•, Training ์ „๋žต, ์ถ”์ • ๊ธฐ์ค€์˜ 3๊ฐ€์ง€ ์ฐจ์›์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜๋  ์ˆ˜ ์žˆ๋‹ค. Key Words : Convolutional neural networks, machine intelligence, pruning method, training strategy, estimation citer..

velpegor
'๊ฒฝ๋Ÿ‰ํ™”' ํƒœ๊ทธ์˜ ๊ธ€ ๋ชฉ๋ก